[Paper review 15]

Fast Dropout Training

(Sida I. Wang, Christopher D. Manning, 2013)

[Contents]

- 0. Abstract
- 1. Introduction
- 2. Fast approximations to dropout
 - 3. The implied objective function
 - 4. The Gaussian approximation
 - 5. Gradient computation by sampling from Gaussian
 - 6. A closed- form approximation

0. Abstract

• Dropout (Hinton et al., 2012)

but, repeatedly sampling makes much slower!

• This paper shows how to do fast dropout training!

"by sampling from, or integrating a GAUSSIAN APPROXIMATION" (instead of doing MC optimization) (by CLT)

1. Introduction

Dropout

- prevent feature co-adaptation \rightarrow regularization
- can be seen as "averaging over many NN with shared weights"

Problem with Dropout

- makes training SLOWER!
- loss of information

(drop out rate of p : proportion of data still not seen after n passes is p^n)

This paper suggests "benefit of dropout training without actually sampling", thereby using ALL data efficiently

ightarrow use Gaussian Approximation

2. Fast approximations to dropout

2.1 The implied objective function

example) Logistic Regression with dropout

- *m* dimension data
- $z_i \sim \text{Bernoulli}(p_i)$, where $i = 1 \dots m$
- SGD update : $\Delta w = \left(y \sigma\left(w^T D_z x
 ight)
 ight) D_z x$
 - $D_z = \operatorname{diag}(z) \in \mathbb{R}^{m imes m}$
 - $\sigma(x) = 1/(1+e^{-x})$
- MC approximation : $\Delta ar{w} = E_{z;z_i \sim ext{ Bernoulli }(p_i)} \left[\left(y \sigma \left(w^T D_z x
 ight)
 ight) D_z x
 ight]$

Objective function of gradient above :

$$\begin{array}{ll} \bullet & y \sim \operatorname{Bernoulli} \big(\sigma \left(w^T D_z x \right) \big) \\ & L(w) & = E_z \left[\log(p \left(y \mid D_z x ; w \right) \right] \\ & = E_z \left[y \log \left(\sigma \left(w^T D_z x \right) \right) + (1-y) \log \left(1 - \sigma \left(w^T D_z x \right) \right) \right] \end{array}$$

- complexity : $O(2^m m)$
- can be reduced to O(m). HOW?

2.2 The Gaussian approximation

(now, let $Y(z) = w^T D_z x = \sum_i^m w_i x_i z_i$ weighted sum of Bernoulli r.v)

Y can be approximated by Normal distribution (as $m o \infty$)

let $Y \xrightarrow{d} S$

$$S = E_z[Y(z)] + \sqrt{\mathrm{Var}[Y(z)]}\epsilon = \mu_S + \sigma_S \epsilon$$

- $\epsilon \sim \mathcal{N}(0,1)$
- $E_{z}[Y(z)] = \sum_{i=1}^{m} p_{i}w_{i}x_{i},$ $\operatorname{Var}[Y(z)] = \sum_{i=1}^{m} p_{i}(1-p_{i})(w_{i}x_{i})^{2}$

2.3 Gradient computation by sampling from Gaussian

BEFORE) sample from Y(z) directly

- time : O(m)
- d

AFTER) sample from S

especially good for high dimensional case

• time : O(1) (m times faster !)

$$\begin{split} L(w) &= E_z \left[y \log \left(\sigma \left(w^T D_z x \right) \right) + (1 - y) \log \left(1 - \sigma \left(w^T D_z x \right) \right) \right] \\ \nabla L(w) &= E_z \left[(y - \sigma(Y(z))) D_z x \right] \\ \bullet \quad f(Y(z)) &= y - \sigma(Y(z)) \end{split}$$

•
$$g(z) = D_z x$$

$$\begin{split} \nabla L(w) = & E_{z} \left[(y - \sigma(Y(z))) D_{z} x \right] \\ = & E_{z} \left[f(Y(z)) x_{i} z_{i} \right] \\ = & \sum_{z_{i} \in \{0,1\}} p\left(z_{i}\right) z_{i} x_{i} E_{z_{-i}|z_{i}} \left[f(Y(z)) \right] \\ = & p\left(z_{i} = 1\right) x_{i} E_{z_{-i}|z_{i}=1} \left[f(Y(z)) \right] \\ \approx & p_{i} x_{i} \left(\left[E_{S \sim \mathcal{N}(\mu_{S}, \sigma_{S}^{2})} \left[f(S) \right] + \Delta \mu_{i} \frac{\partial E_{S \sim \mathcal{N}(\mu, \sigma_{S}^{2})} \left[f(S) \right]}{\partial \mu} \right|_{\mu = \mu_{S}} + \Delta \sigma_{i}^{2} \frac{\partial E_{S \sim \mathcal{N}(\mu_{S}, \sigma^{2})} \left[f(S) \right]}{\partial \sigma^{2}} \right|_{\sigma^{2} = \sigma_{S}^{2}} \right) \\ = & p_{i} x_{i} \left(\alpha \left(\mu_{S}, \sigma_{S}^{2} \right) + \Delta \mu_{i} \beta \left(\mu_{S}, \sigma_{S}^{2} \right) + \Delta \sigma_{i}^{2} \gamma \left(\mu_{S}, \sigma_{S}^{2} \right) \right) \end{split}$$

• $\Delta \mu_i = (1 - p_i) x_i w_i$ • $\Delta \sigma_i^2 = -p_i (1 - p_i) x_i^2 w_i^2$

 $lpha,eta,\gamma$ can be computed by drawing K samples from S o takes O(K) time

(\leftrightarrow if sample from Y(z) , takes O(mK) time!)

- α only need to be computed ONE per training case

•
$$\beta(\mu, \sigma^2) = \frac{\partial \alpha(\mu, \sigma^2)}{\partial \mu}$$

 $\gamma(\mu, \sigma^2) = \frac{\partial \alpha(\mu, \sigma^2)}{\partial \sigma^2}$

$$\begin{array}{l} \bullet \quad \alpha \left(\mu_S, \sigma_S^2 \right) = E_{S \sim \mathcal{N} \left(\mu_S, \sigma_S^2 \right)} \left[f(S) \right] \\ \\ \alpha \left(\mu, \sigma^2 \right) = y - E_{S \sim \mathcal{N} \left(0, 1 \right)} \left[\frac{1}{1 + e^{-\mu - \sigma_S S}} \right] \end{array}$$

$$egin{aligned} L(w) &= E_z \left[\log(p\left(y \mid D_z x; w
ight)
ight] \ &= E_z \left[y \logig(\sigma\left(w^T D_z x
ight)
ight) + (1-y) \logig(1-\sigma\left(w^T D_z x
ight)
ight)
ight] \ &pprox E_{S \sim \mathcal{N}(\mu_S, \sigma_S)} [y \log(\sigma(S)) + (1-y) \log(1-\sigma(S))] \end{aligned}$$

2.4 A closed- form approximation

/

 $\Phi(x)$: CDF of Gaussian ($= rac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-t^2/2}dt$)

 $\sigma(x)$: sigmoid (logistic) function

Since $\sigma(x) pprox \Phi(\sqrt{\pi/8}x),$

$$\bullet \ \ \int_{-\infty}^{\infty} \Phi(\lambda x) \mathcal{N}(x \mid \mu, s) dx = \Phi\left(rac{\mu}{\sqrt{\lambda^{-2} + s^2}}
ight)$$

•
$$\int_{-\infty}^{\infty} \sigma(x) \mathcal{N}\left(x \mid \mu, s^2\right) dx pprox \sigma\left(rac{\mu}{\sqrt{1+\pi s^2/8}}
ight)$$

Apply the above to our case ...

$$egin{aligned} E_{X \sim \mathcal{N}(\mu, s^2)}[\log(\sigma(X))] &= \int_{-\infty}^\infty \log(\sigma(x)) \mathcal{N}\left(x \mid \mu, s^2
ight) dx \ &pprox \sqrt{1 + \pi s^2/8} \log \sigma\left(rac{\mu}{\sqrt{1 + \pi s^2/8}}
ight) \end{aligned}$$