[Paper review 15]
 Fast Dropout Training

(Sida I. Wang, Christopher D. Manning, 2013)

[Contents]

0. Abstract
1. Introduction
2. Fast approximations to dropout
3. The implied objective function
4. The Gaussian approximation
5. Gradient computation by sampling from Gaussian
6. A closed- form approximation

0. Abstract

- Dropout (Hinton et al., 2012)
but, repeatedly sampling makes much slower!
- This paper shows how to do fast dropout training!
"by sampling from, or integrating a GAUSSIAN APPROXIMATION" (instead of doing MC optimization) (by CLT)

1. Introduction

Dropout

- prevent feature co-adaptation \rightarrow regularization
- can be seen as "averaging over many NN with shared weights"

Problem with Dropout

- makes training SLOWER!
- loss of information
(drop out rate of p : proportion of data still not seen after n passes is p^{n})

This paper suggests "benefit of dropout training without actually sampling", thereby using ALL data efficiently

2. Fast approximations to dropout

2.1 The implied objective function

example) Logistic Regression with dropout

- m dimension data
- $z_{i} \sim \operatorname{Bernoulli}\left(p_{i}\right)$, where $i=1 \ldots m$
- SGD update : $\Delta w=\left(y-\sigma\left(w^{T} D_{z} x\right)\right) D_{z} x$

$$
\begin{array}{ll}
\circ & D_{z}=\operatorname{diag}(z) \in \mathbb{R}^{m \times m} \\
\circ & \sigma(x)=1 /\left(1+e^{-x}\right)
\end{array}
$$

- MC approximation : $\Delta \bar{w}=E_{z ; z_{i} \sim \operatorname{Bernoulli}\left(p_{i}\right)}\left[\left(y-\sigma\left(w^{T} D_{z} x\right)\right) D_{z} x\right]$

Objective function of gradient above :

- $y \sim \operatorname{Bernoulli}\left(\sigma\left(w^{T} D_{z} x\right)\right)$

$$
\begin{aligned}
L(w) & =E_{z}\left[\log \left(p\left(y \mid D_{z} x ; w\right)\right]\right. \\
& =E_{z}\left[y \log \left(\sigma\left(w^{T} D_{z} x\right)\right)+(1-y) \log \left(1-\sigma\left(w^{T} D_{z} x\right)\right)\right]
\end{aligned}
$$

- complexity: $O\left(2^{m} m\right)$
- can be reduced to $O(m)$.... HOW?

2.2 The Gaussian approximation

(now, let $Y(z)=w^{T} D_{z} x=\sum_{i}^{m} w_{i} x_{i} z_{i} \ldots .$. weighted sum of Bernoulli r.v)
Y can be approximated by Normal distribution (as $m \rightarrow \infty$)
let $Y \xrightarrow{d} S$
$S=E_{z}[Y(z)]+\sqrt{\operatorname{Var}[Y(z)]} \epsilon=\mu_{S}+\sigma_{S} \epsilon$

- $\epsilon \sim \mathcal{N}(0,1)$
- $E_{z}[Y(z)]=\sum_{i=1}^{m} p_{i} w_{i} x_{i}$,
- $\operatorname{Var}[Y(z)]=\sum_{i=1}^{m} p_{i}\left(1-p_{i}\right)\left(w_{i} x_{i}\right)^{2}$

2.3 Gradient computation by sampling from Gaussian

BEFORE) sample from $Y(z)$ directly

- time: $O(m)$
- d

AFTER) sample from S

- especially good for high dimensional case
- time : $O(1)$ (m times faster !)
$L(w)=E_{z}\left[y \log \left(\sigma\left(w^{T} D_{z} x\right)\right)+(1-y) \log \left(1-\sigma\left(w^{T} D_{z} x\right)\right)\right]$
$\nabla L(w)=E_{z}\left[(y-\sigma(Y(z))) D_{z} x\right]$
- $f(Y(z))=y-\sigma(Y(z))$
- $g(z)=D_{z} x$

$$
\begin{aligned}
\nabla L(w) & =E_{z}\left[(y-\sigma(Y(z))) D_{z} x\right] \\
& =E_{z}\left[f(Y(z)) x_{i} z_{i}\right] \\
& =\sum_{z_{i} \in\{0,1\}} p\left(z_{i}\right) z_{i} x_{i} E_{z_{-i} \mid z_{i}}[f(Y(z))] \\
& =p\left(z_{i}=1\right) x_{i} E_{z_{-i} \mid z_{i}=1}[f(Y(z))] \\
& \approx p_{i} x_{i}\left(E_{S \sim \mathcal{N}\left(\mu_{S}, \sigma_{S}^{2}\right)}[f(S)]+\left.\Delta \mu_{i} \frac{\left.\partial E_{S \sim N\left(\mu, \sigma_{S}^{2}\right)}[f(S)]\right]}{\partial \mu}\right|_{\mu=\mu_{S}}+\left.\Delta \sigma_{i}^{2} \frac{\partial E_{S \sim N\left(\mu, \sigma^{2}\right)}[f(S)]}{\partial \sigma^{2}}\right|_{\sigma^{2}=\sigma_{S}^{2}}\right) \\
& =p_{i} x_{i}\left(\alpha\left(\mu_{S}, \sigma_{S}^{2}\right)+\Delta \mu_{i} \beta\left(\mu_{S}, \sigma_{S}^{2}\right)+\Delta \sigma_{i}^{2} \gamma\left(\mu_{S}, \sigma_{S}^{2}\right)\right)
\end{aligned}
$$

- $\Delta \mu_{i}=\left(1-p_{i}\right) x_{i} w_{i}$
- $\Delta \sigma_{i}^{2}=-p_{i}\left(1-p_{i}\right) x_{i}^{2} w_{i}^{2}$
α, β, γ can be computed by drawing K samples from $S \rightarrow$ takes $O(K)$ time (\leftrightarrow if sample from $Y(z)$, takes $O(m K)$ time!)
- α only need to be computed ONE per training case
- $\beta\left(\mu, \sigma^{2}\right)=\frac{\partial \alpha\left(\mu, \sigma^{2}\right)}{\partial \mu}$

$$
\gamma\left(\mu, \sigma^{2}\right)=\frac{\partial \alpha\left(\mu, \sigma^{2}\right)}{\partial \sigma^{2}}
$$

- $\alpha\left(\mu_{S}, \sigma_{S}^{2}\right)=E_{S \sim \mathcal{N}\left(\mu_{S}, \sigma_{S}^{2}\right)}[f(S)]$

$$
\alpha\left(\mu, \sigma^{2}\right)=y-E_{S \sim \mathcal{N}(0,1)}\left[\frac{1}{1+e^{-\mu-\sigma_{S} S}}\right]
$$

$$
\begin{aligned}
L(w) & =E_{z}\left[\log \left(p\left(y \mid D_{z} x ; w\right)\right]\right. \\
& =E_{z}\left[y \log \left(\sigma\left(w^{T} D_{z} x\right)\right)+(1-y) \log \left(1-\sigma\left(w^{T} D_{z} x\right)\right)\right] \\
& \approx E_{S \sim \mathcal{N}\left(\mu_{S}, \sigma_{S}\right)}[y \log (\sigma(S))+(1-y) \log (1-\sigma(S))]
\end{aligned}
$$

2.4 A closed- form approximation

$\Phi(x)$: CDF of Gaussian ($=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t$)
$\sigma(x)$: sigmoid (logistic) function
Since $\sigma(x) \approx \Phi(\sqrt{\pi / 8} x)$,

- $\int_{-\infty}^{\infty} \Phi(\lambda x) \mathcal{N}(x \mid \mu, s) d x=\Phi\left(\frac{\mu}{\sqrt{\lambda^{-2}+s^{2}}}\right)$
- $\int_{-\infty}^{\infty} \sigma(x) \mathcal{N}\left(x \mid \mu, s^{2}\right) d x \approx \sigma\left(\frac{\mu}{\sqrt{1+\pi s^{2} / 8}}\right)$

Apply the above to our case ...

$$
\begin{aligned}
E_{X \sim \mathcal{N}\left(\mu, s^{2}\right)}[\log (\sigma(X))] & =\int_{-\infty}^{\infty} \log (\sigma(x)) \mathcal{N}\left(x \mid \mu, s^{2}\right) d x \\
& \approx \sqrt{1+\pi s^{2} / 8} \log \sigma\left(\frac{\mu}{\sqrt{1+\pi s^{2} / 8}}\right)
\end{aligned}
$$

